Suavização de dados remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Ele / ela toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma maneira de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados do MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra forma de calcular a média é adicionando cada valor dividido pelo número de valores, ou 3/3 4/3 5/3 1 1.3333 1.6667 4. O multiplicador 1/3 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. Média Móvel - MA Como um exemplo de SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (a esquerda (frac direito)) são os pesos e, claro, (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria média Os preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. O impulso para baixo é confirmado com um crossover de baixa, o que ocorre quando um MA de curto prazo cruza abaixo de um MA de longo prazo. Na prática, a média móvel fornecerá uma boa estimativa da média das séries temporais se a média for constante ou lentamente alterada . No caso de uma média constante, o maior valor de m dará as melhores estimativas da média subjacente. Um período de observação mais longo medirá os efeitos da variabilidade. O objetivo de fornecer um m menor é permitir que a previsão responda a uma mudança no processo subjacente. Para ilustrar, propomos um conjunto de dados que incorpora mudanças na média subjacente das séries temporais. A figura mostra a série de tempo usada para ilustração juntamente com a demanda média a partir da qual a série foi gerada. A média começa como uma constante em 10. Começando no tempo 21, ele aumenta em uma unidade em cada período até atingir o valor de 20 no tempo 30. Então ele se torna constante novamente. Os dados são simulados adicionando à média um ruído aleatório de uma distribuição Normal com média zero e desvio padrão 3. Os resultados da simulação são arredondados para o número inteiro mais próximo. A tabela mostra as observações simuladas usadas para o exemplo. Quando usamos a tabela, devemos lembrar que a qualquer momento, apenas os dados passados são conhecidos. As estimativas do parâmetro do modelo, para três valores diferentes de m, são mostradas juntamente com a média das séries temporais na figura abaixo. A figura mostra a estimativa média móvel da média em cada momento e não a previsão. As previsões mudariam as curvas da média móvel para a direita por períodos. Uma conclusão é imediatamente aparente a partir da figura. Para as três estimativas, a média móvel está aquém da tendência linear, com o atraso aumentando com m. O atraso é a distância entre o modelo ea estimativa na dimensão temporal. Devido ao atraso, a média móvel subestima as observações à medida que a média está aumentando. O viés do estimador é a diferença em um tempo específico no valor médio do modelo eo valor médio predito pela média móvel. O viés quando a média está aumentando é negativo. Para uma média decrescente, o viés é positivo. O atraso no tempo e o viés introduzido na estimativa são funções de m. Quanto maior o valor de m. Maior a magnitude do atraso e do viés. Para uma série de crescimento contínuo com tendência a. Os valores de lag e viés do estimador da média são dados nas equações abaixo. As curvas de exemplo não correspondem a essas equações porque o modelo de exemplo não está aumentando continuamente, em vez disso, ele começa como uma constante, muda para uma tendência e, em seguida, torna-se constante novamente. Também as curvas de exemplo são afetadas pelo ruído. A previsão média móvel de períodos no futuro é representada deslocando as curvas para a direita. O atraso e o viés aumentam proporcionalmente. As equações abaixo indicam o atraso e o viés de um período de previsão para o futuro quando comparado aos parâmetros do modelo. Novamente, essas fórmulas são para uma série de tempo com uma tendência linear constante. Não devemos nos surpreender com esse resultado. O estimador da média móvel baseia-se no pressuposto de uma média constante, eo exemplo tem uma tendência linear na média durante uma parte do período do estudo. Como as séries de tempo real raramente obedecerão exatamente aos pressupostos de qualquer modelo, devemos estar preparados para tais resultados. Podemos também concluir a partir da figura que a variabilidade do ruído tem o maior efeito para m menor. A estimativa é muito mais volátil para a média móvel de 5 do que a média móvel de 20. Temos os desejos conflitantes de aumentar m para reduzir o efeito da variabilidade devido ao ruído e diminuir m para tornar a previsão mais sensível às mudanças Em média O erro é a diferença entre os dados reais e o valor previsto. Se a série temporal é verdadeiramente um valor constante, o valor esperado do erro é zero ea variância do erro é composta por um termo que é uma função de e um segundo termo que é a variância do ruído,. O primeiro termo é a variância da média estimada com uma amostra de m observações, assumindo que os dados provêm de uma população com média constante. Este termo é minimizado fazendo-se o maior possível. Um grande m faz com que a previsão não responda a uma mudança nas séries temporais subjacentes. Para tornar a previsão responsiva às mudanças, queremos que m seja o menor possível (1), mas isso aumenta a variância do erro. A previsão prática requer um valor intermediário. Previsão com o Excel O suplemento de Previsão implementa as fórmulas de média móvel. O exemplo abaixo mostra a análise fornecida pelo add-in para os dados da amostra na coluna B. As 10 primeiras observações são indexadas -9 a 0. Em comparação com a tabela acima, os índices de período são deslocados por -10. As primeiras dez observações fornecem os valores de inicialização para a estimativa e são usados para calcular a média móvel para o período 0. A coluna MA (10) (C) mostra as médias móveis calculadas. O parâmetro de média móvel m está na célula C3. A coluna Fore (1) (D) mostra uma previsão para um período no futuro. O intervalo de previsão está na célula D3. Quando o intervalo de previsão é alterado para um número maior, os números na coluna Fore são deslocados para baixo. A coluna Err (1) (E) mostra a diferença entre a observação e a previsão. Por exemplo, a observação no tempo 1 é 6. O valor previsto a partir da média móvel no tempo 0 é 11.1. O erro é então -5.1. O desvio padrão eo Desvio Médio Médio (MAD) são calculados nas células E6 e E7 respectivamente.8.4 Modelos de média móvel Em vez de usar valores passados da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados em um modelo de regressão . Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). É claro que não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só mudará a escala da série, não os padrões. É possível escrever qualquer modelo AR (p) estacionário como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e amptext final Fornecido -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Modelos Invertiveis não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos. Os processos de erro de média móvel (erros ARMA) e outros modelos que envolvem atrasos de termos de erro podem ser estimados usando declarações FIT e simulados ou previstos usando declarações SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivo. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido pelo PROC MODEL como A função ZLAG deve ser usada para que os modelos MA trunquem a recursividade dos atrasos. Isso garante que os erros defasados começam em zero na fase de antecipação e não propagam valores ausentes quando faltam as variáveis de período de latência e garantem que os erros futuros sejam zero, em vez de faltarem durante a simulação ou a previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. O modelo geral ARMA (p, q) tem a seguinte forma: Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que desejar para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis para os erros das duas variáveis endógenas Y1 e Y2 pode ser especificado da seguinte maneira: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro do intervalo apropriado, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA normalmente funcionam se o modelo se encaixa bem nos dados e o problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo de alta ordem AR, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas dos parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis, se disponível). Em seguida, use outra instrução FIT para estimar os parâmetros ARMA somente, usando os valores de parâmetro estrutural da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos SAS / ETS são os seguintes: mínimos quadrados condicionais (procedimentos ARMA e MODELO) mínimos máximos incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (Procedimento AUTOREG somente) Hildreth-Lu, que exclui as primeiras p observações (procedimento MODEL somente) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações de CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais de estimativa de termos de erros de média móvel não é ótimo porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar esse problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro da faixa de inversão. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A macro AR A macro SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SAS / ETS, e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita auto-regressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro precedente, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de opção LIST para um modelo AR (2) As variáveis prefixadas PRED são variáveis de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em defasagens selecionadas. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Lista de Código de Programa Compilado como Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Auto-regressão vetorial irrestrita Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis usados são exclusivos. Use um valor de processname curto para o processo se as estimativas de parâmetros forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis é a lista de variáveis endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições de que a matriz de coeficientes seja 0 em intervalos selecionados. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes com atraso 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis em vez de nos erros usando a opção TYPEV. Se você quiser modelar Y1Y3 como uma função de valores passados de Y1Y3 e algumas variáveis exógenas ou constantes, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de auto-regressão do vetor, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis antes de AR é chamado. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2 e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes AR termos e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR mas é esperar por mais informações especificadas em chamadas AR mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações da lista de equações. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist irá usar todos os intervalos 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SAS / ETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SAS / IML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo MA de vetor não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa de CLS é usada para o processo de vetor. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os atrasos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média de Vetores Restrita Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA mas é aguardar informações adicionais especificadas em chamadas de MA posterior para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é o mesmo que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações da lista de equações. Especifica a lista de defasagens em que os termos MA devem ser adicionados.
No comments:
Post a Comment