Tuesday, 14 November 2017

Previsão de demanda média móvel de três meses


OR-Notes OR-Notes são uma série de notas introdutórias sobre tópicos que se enquadram no título geral do campo de pesquisa operacional (OR). Eles foram originalmente usados ​​por mim em um curso introdutório OR eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudantes e professores interessados ​​em OU sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis em OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 Exame UG A procura por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique a suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual destas duas previsões você prefere e porquê? A média móvel para os meses dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9 obtemos: Antes da previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, verificamos que para a média móvel MSD (15-19) sup2 (18-23) sup2 (21-24) sup2 / 3 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13-17) ) Sup2 (18.76 - 23) sup2 (22.58 - 24) sup2 / 4 10.44 Em geral, vemos que a suavização exponencial parece dar as melhores previsões de um mês de antecedência, uma vez que tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão 1994 UG exam A tabela abaixo mostra a demanda por um novo aftershave em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria sua previsão para a demanda no mês oito Aplicar suavização exponencial com uma constante de suavização de 0,1 para derivar uma previsão para a demanda no mês oito. Qual das duas previsões para o mês oito você prefere e por que? O detentor de loja acredita que os clientes estão mudando para este novo pós-barba de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. Solução A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel para o mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando suavização exponencial com uma constante de suavização de 0,1 Nós começamos: Como antes da previsão para o mês oito é apenas a média para o mês 7 M 7 31,11 31 (como não podemos ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1 Overall, então vemos que a média móvel de dois meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Assim, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança precisamos usar um modelo de processo de Markov, onde marcas estaduais e precisaríamos de informações de estado iniciais e probabilidades de troca de clientes (de pesquisas). Teríamos de executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 UG exame A tabela abaixo mostra a demanda por uma determinada marca de barbear em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses para os meses três a nove. Qual seria sua previsão para a demanda no mês dez Aplicar suavização exponencial com uma constante de suavização de 0,3 para derivar uma previsão para a demanda no mês dez. A média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 9 M 9 20,33. Portanto, como não podemos ter uma demanda fracionária, a previsão para o mês 10 é 20. Aplicando a suavização exponencial com uma constante de suavização de 0,3 obtemos: Como antes a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que, para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3 geral, vemos que a média móvel de três meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Por isso preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão 1991 UG exame A tabela abaixo mostra a demanda por uma determinada marca de fax em uma loja de departamentos em cada um dos últimos doze meses. Calcular a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar suavização exponencial com uma constante de suavização de 0,2 para derivar uma previsão para a demanda no mês 13. Qual das duas previsões para o mês 13 O que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda do aparelho de fax no mês 13. Solução A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) / 4 17,25 m 5 (27 23 19 15) / 4 21 m 6 (30 27 23 19) / 4 24,75 m 7 (32 30 27 23) / 4 28 m 8 (33 32 30 27) / 4 30,5 m 9 ( 37 33 32 30) / 4 33 m 10 (41 37 33 32) / 4 35,75 m 11 (49 41 37 33) / 4 40 m 12 (58 49 41 37) / 4 46,25 A previsão para o mês 13 é apenas o movimento Média do mês anterior, ou seja, a média móvel para o mês 12 m 12 46,25. A previsão para o mês 13 é 46. Aplicando a suavização exponencial com uma constante de suavização de 0.2 obtemos: Como antes a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós não podemos ter a demanda fracionária) Não pode ter demanda fracionária). Para comparar as duas previsões, calculamos o desvio quadrático médio (MSD). Se fizermos isso, descobrimos que, para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0.2 Overall, vemos que a média móvel de quatro meses parece dar as melhores previsões de um mês de antecedência, uma vez que tem um menor MSD. Por isso preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demanda sazonal mudanças de preços de publicidade, tanto esta marca e outras marcas situação económica geral nova tecnologia Exemplo de previsão 1989 UG exame A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar suavização exponencial com uma constante de suavização de 0,7 para derivar uma previsão para a demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e porquê Solução Agora não podemos calcular um Média móvel de seis meses até termos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por conseguinte, temos: m 6 (34 32 30 29 31 27) / 6 30,50 m 7 (36 34 32 30 29 31) / 6 32,00 m 8 (35 36 34 32 30 29) / 6 32,67 m 9 (37 35 36 34 32 30) / 6 34,00 m 10 (39 37 35 36 34 32) / 6 35,50 m 11 (40 39 37 35 36 34) / 6 36,83 m 12 (42 40 39 37 35 36) / 6 38,17 A previsão para o mês 13 É apenas a média móvel para o mês anterior que ou seja, a média móvel para o mês 12 m 12 38,17. Portanto, como não podemos ter demanda fracionária, a previsão para o mês 13 é de 38. Aplicando-se a suavização exponencial com uma constante de suavização de 0,7 obtemos: Introdução à Previsão da Média Móvel. Como você pode imaginar, estamos olhando para algumas das abordagens mais primitivas para a previsão. Mas espero que estas sejam pelo menos uma introdução interessante a algumas das questões de computação relacionadas à implementação de previsões em planilhas. Neste sentido, vamos continuar a partir do início e começar a trabalhar com previsões de média móvel. Previsões médias móveis. Todo mundo está familiarizado com as previsões de média móvel, independentemente de eles acreditam que são. Todos os estudantes universitários fazê-los o tempo todo. Pense nas suas pontuações dos testes num curso em que vai ter quatro testes durante o semestre. Vamos supor que você tem um 85 em seu primeiro teste. O que você poderia prever para sua pontuação do segundo teste O que você acha que seu professor iria prever para a sua próxima pontuação de teste O que você acha que seus amigos podem prever para a sua próxima pontuação de teste O que você acha que seus pais podem prever para sua pontuação próxima teste Independentemente de Todo o blabbing você pôde fazer a seus amigos e pais, eles e seu professor são muito prováveis ​​esperar que você comece algo na área do 85 que você começou apenas. Bem, agora vamos supor que, apesar de sua auto-promoção para seus amigos, você superestimar-se e figura que você pode estudar menos para o segundo teste e assim você começa um 73. Agora o que são todos os interessados ​​e despreocupado vai Antecipar você vai chegar em seu terceiro teste Existem duas abordagens muito provável para que eles desenvolvam uma estimativa, independentemente de se eles vão compartilhar com você. Eles podem dizer a si mesmos: "Esse cara está sempre soprando fumaça sobre suas espertinas. Hes que vai obter outro 73 se hes afortunado. Talvez os pais tentem ser mais solidários e dizer: "Bem, até agora você tem obtido um 85 e um 73, então talvez você deve figura em obter cerca de um (85 73) / 2 79. Eu não sei, talvez se você fez menos Festejando e werent abanando a doninhas em todo o lugar e se você começou a fazer muito mais estudando você poderia obter uma pontuação mais alta. quot Ambas as estimativas são, na verdade, média móvel previsões. O primeiro é usar apenas sua pontuação mais recente para prever o seu desempenho futuro. Isso é chamado de média móvel usando um período de dados. A segunda também é uma média móvel, mas usando dois períodos de dados. Vamos supor que todas essas pessoas rebentando em sua grande mente têm tipo de puto você fora e você decidir fazer bem no terceiro teste para suas próprias razões e colocar uma pontuação mais alta na frente de seus quotalliesquot. Você toma o teste e sua pontuação é realmente um 89 Todos, incluindo você mesmo, está impressionado. Então agora você tem o teste final do semestre chegando e, como de costume, você sente a necessidade de incitar todo mundo a fazer suas predições sobre como você vai fazer no último teste. Bem, espero que você veja o padrão. Agora, espero que você possa ver o padrão. Qual você acha que é o apito mais preciso enquanto trabalhamos. Agora vamos voltar para a nossa nova empresa de limpeza iniciada por sua meia irmã distante chamado Whistle While We Work. Você tem alguns dados de vendas anteriores representados na seção a seguir de uma planilha. Primeiro, apresentamos os dados para uma previsão média móvel de três períodos. A entrada para a célula C6 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C7 a C11. Observe como a média se move sobre os dados históricos mais recentes, mas usa exatamente os três períodos mais recentes disponíveis para cada previsão. Você também deve notar que nós realmente não precisamos fazer as previsões para os períodos passados, a fim de desenvolver a nossa previsão mais recente. Isto é definitivamente diferente do modelo de suavização exponencial. Ive incluído o quotpast previsõesquot porque vamos usá-los na próxima página da web para medir a validade de previsão. Agora eu quero apresentar os resultados análogos para uma previsão média móvel de dois períodos. A entrada para a célula C5 deve ser Agora você pode copiar esta fórmula de célula para baixo para as outras células C6 a C11. Observe como agora apenas as duas mais recentes peças de dados históricos são utilizados para cada previsão. Mais uma vez incluí as previsões quotpast para fins ilustrativos e para uso posterior na validação de previsão. Algumas outras coisas que são de importância notar. Para uma previsão média móvel de m-período, apenas os m valores de dados mais recentes são usados ​​para fazer a previsão. Nada mais é necessário. Para uma previsão média móvel de m-período, ao fazer previsões quotpastquot, observe que a primeira predição ocorre no período m 1. Ambas as questões serão muito significativas quando desenvolvemos nosso código. Desenvolvendo a função de média móvel. Agora precisamos desenvolver o código para a previsão da média móvel que pode ser usado de forma mais flexível. O código segue. Observe que as entradas são para o número de períodos que você deseja usar na previsão ea matriz de valores históricos. Você pode armazená-lo em qualquer pasta de trabalho que você deseja. Função MovingAverage (Histórico, NumberOfPeriods) Como Único Declarar e inicializar variáveis ​​Dim Item Como Variante Dim Counter Como Inteiro Dim Acumulação como Único Dim HistoricalSize As Inteiro Inicializando variáveis ​​Counter 1 Acumulação 0 Determinando o tamanho da Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulando o número apropriado dos valores mais recentes anteriormente observados Acumulação Acumulação Histórico (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulação / NumberOfPeriods O código será explicado na classe. Você deseja posicionar a função na planilha de modo que o resultado da computação seja exibido onde ele deve gostar da seguinte. Média ponderada Métodos de previsão média: Prós e contras Comentários Oi, adore seu post. Estava me perguntando se você poderia elaborar mais. Usamos SAP. Nele há uma seleção que você pode escolher antes de executar sua previsão chamada de inicialização. Se você marcar essa opção, você obterá um resultado de previsão, se você executar a previsão novamente, no mesmo período e não verificar a inicialização, o resultado será alterado. Eu não consigo descobrir o que a inicialização está fazendo. Quero dizer, matemática. Qual o resultado da previsão é melhor para salvar e usar, por exemplo. As mudanças entre os dois não estão na quantidade prevista, mas no MAD e erro, estoque de segurança e quantidades ROP. Não tenho certeza se você usa o SAP. Oi obrigado por explicar tão eficientemente seu gd demais. Obrigado novamente Jaspreet Deixe uma resposta Cancelar resposta Mais Popular Posts Sobre Pete Abilla Pete Abilla é o fundador da Shmula. Ele ajuda empresas como a Amazon, Zappos, eBay, Backcountry e outros a reduzir custos e melhorar a experiência do cliente. Ele faz isso através de um método sistemático para a identificação de pontos de dor que afetam o cliente e os negócios e incentiva a ampla participação dos associados da empresa para melhorar seus próprios processos. A abordagem mais simples seria tomar a média de janeiro a março e usar isso para estimar as vendas de abril de 1982: (129 134 122) / 3 128.333 Assim, com base nas vendas de janeiro a março, você prevê que as vendas em abril serão 128.333. Uma vez que as vendas reais de April8217s vêm dentro, você calcularia então a previsão para maio, desta vez usando fevereiro com abril. Você deve ser consistente com o número de períodos que você usa para a média móvel de previsão. O número de períodos que você usa em suas previsões de média móvel é arbitrário, você pode usar apenas dois períodos, ou cinco ou seis períodos o que você deseja gerar suas previsões. A abordagem acima é uma média móvel simples. Às vezes, as vendas mais recentes podem ser influenciadores mais fortes das vendas do próximo mês, então você quer dar a esses meses mais próximos mais peso em seu modelo de previsão. Esta é uma média móvel ponderada. E assim como o número de períodos, os pesos que você atribuir são puramente arbitrária. Let8217s dizem que você quis dar as vendas de March8217s 50 peso, February8217s 30 peso, e January8217s 20. Então sua previsão para abril será 127.000 (122.50) (134.30) (129.20) 127. Limitações dos Métodos de Movimentação Média As médias móveis são consideradas uma técnica de previsão 8220smoothing8221. Porque você está tomando uma média ao longo do tempo, você está suavizando (ou alisando para fora) os efeitos de ocorrências irregulares dentro dos dados. Como resultado, os efeitos da sazonalidade, ciclos de negócios e outros eventos aleatórios podem aumentar dramaticamente o erro de previsão. Dê uma olhada em um ano completo de 8217s de dados, e comparar uma média móvel de 3 períodos e uma média móvel de 5 períodos: Observe que neste caso que eu não criar previsões, mas sim centrado as médias móveis. A primeira média móvel de 3 meses é para fevereiro, e é a média de janeiro, fevereiro e março. Eu também fiz semelhante para a média de 5 meses. Agora dê uma olhada no seguinte gráfico: O que você vê Não é a série média móvel de três meses muito mais suave do que a série de vendas reais E como sobre a média móvel de cinco meses It8217s ainda mais suave. Assim, quanto mais períodos você usar em sua média móvel, o mais suave sua série de tempo. Assim, para a previsão, uma média móvel simples pode não ser o método mais preciso. Métodos de média móvel se revelam bastante valiosos quando se tenta extrair os componentes sazonais, irregulares e cíclicos de uma série de tempo para métodos de previsão mais avançados, como regressão e ARIMA, eo uso de médias móveis na decomposição de uma série de tempo será abordado mais tarde Na série. Determinando a exatidão de um modelo de média móvel Geralmente, você quer um método de previsão que tenha o menor erro entre os resultados reais e previstos. Uma das medidas mais comuns de precisão de previsão é o Desvio Médio Absoluto (MAD). Nesta abordagem, para cada período da série de tempo para a qual você gerou uma previsão, você toma o valor absoluto da diferença entre os valores atuais e previstos do período (o desvio). Então você média esses desvios absolutos e você começa uma medida de MAD. MAD pode ser útil para decidir o número de períodos que você média, e / ou a quantidade de peso que você coloca em cada período. Geralmente, você escolhe o que resulta no menor MAD. Aqui está um exemplo de como MAD é calculado: MAD é simplesmente a média de 8, 1 e 3. Médias móveis: recapitulação Ao usar médias móveis para previsão, lembre-se: As médias móveis podem ser simples ou ponderadas O número de períodos que você usa para o seu Média e quaisquer pesos que você atribuir a cada um são estritamente arbitrários Médias móveis alisam padrões irregulares em dados de séries temporais quanto maior o número de períodos usados ​​para cada ponto de dados, maior o efeito de suavização Devido ao alisamento, previsão das vendas do próximo mês com base no A maioria das recentes vendas de meses pode resultar em grandes desvios por causa da sazonalidade, ciclos e padrões irregulares nos dados e as capacidades de suavização de um método de média móvel pode ser útil na decomposição de uma série de tempo para métodos de previsão mais avançados. Semana seguinte: Exponential Smoothing Na próxima semana8217s Forecast Sexta-feira. Vamos discutir os métodos exponenciais de suavização, e você verá que eles podem ser muito superiores aos métodos de previsão média móvel. Ainda não sei porquê a nossa previsão Sexta-feira postagens aparecem na quinta-feira Descubra em: tinyurl / 26cm6ma Gostaria: Related Post navegação Deixe uma resposta Cancelar resposta Eu tinha 2 perguntas: 1) Você pode usar a abordagem centrada MA para prever ou apenas para a remoção de sazonalidade 2) Quando você usa o simples t (t-1t-2t-k) / k MA para prever um período à frente, é possível prever mais de um período à frente Eu acho que então a sua previsão seria um dos pontos de alimentação para o Próximo. Obrigado. Adoro a informação e as suas explicações. Estou contente por você gostar do blog. Certamente, vários analistas usaram a abordagem de MA centralizada para a previsão, mas eu pessoalmente não faria, uma vez que essa abordagem resulta em uma perda de observações em ambos os lados. Na verdade, isso envolve sua segunda pergunta. Geralmente, MA simples é usado para prever apenas um período à frente, mas muitos analistas 8211 e eu também, por vezes 8211 vai usar a minha previsão de um período à frente como uma das entradas para o segundo período à frente. É importante lembrar que quanto mais futuro você tentar prever, maior será o risco de erro de previsão. É por isso que eu não recomendo o MA centrado para a previsão de perda de observações no final significa ter que depender de previsões para as observações perdidas, bem como o período (s) à frente, por isso há maior chance de erro de previsão. Leitores: você é convidado a pesar sobre isso. Você tem alguma opinião ou sugestões sobre este Brian, obrigado por seu comentário e seus elogios no blog Nice iniciativa e explicação agradável. It8217s realmente útil. Prevejo placas de circuito impresso personalizadas para um cliente que não fornece previsões. Eu usei a média móvel, no entanto, não é muito preciso como a indústria pode ir para cima e para baixo. Vemos para o meio do verão até o final do ano que o transporte pcb8217s está acima. Em seguida, vemos no início do ano abranda caminho para baixo. Como posso ser mais preciso com os meus dados Katrina, do que você me disse, parece que suas vendas de placa de circuito impresso tem um componente sazonal. Eu faço a sazonalidade do endereço em algum do outro borne de sexta-feira da previsão. Outra abordagem que você pode usar, o que é bastante fácil, é o algoritmo Holt-Winters, que leva em conta a sazonalidade. Você pode encontrar uma boa explicação aqui. Certifique-se de determinar se seus padrões sazonais são multiplicativos ou aditivos, porque o algoritmo é ligeiramente diferente para cada um. Se você traçar seus dados mensais a partir de alguns anos e ver que as variações sazonais nos mesmos tempos dos anos parecem ser constante ano após ano, então a sazonalidade é aditiva se as variações sazonais ao longo do tempo parecem estar a aumentar, então a sazonalidade é Multiplicativo. A maioria das séries temporais sazonais serão multiplicativas. Em caso de dúvida, considere multiplicativo. Boa sorte Olá, Entre esses métodos:. Previsão da Nave. Atualizando a Média. Média móvel de comprimento k. Ou Média Móvel Ponderada de comprimento k OR Suavização Exponencial Qual desses modelos de atualização você me recomenda usar para prever os dados Para minha opinião, estou pensando em Moving Average. Mas eu não sei como torná-lo claro e estruturado Depende realmente da quantidade e qualidade dos dados que você tem e seu horizonte de previsão (longo prazo, médio ou curto prazo) Técnicas que fazem uso de dados históricos acumulados ao longo de um período de tempo. Os métodos da série temporal pressupõem que o que ocorreu no passado continuará a ocorrer no futuro. Como sugere a série temporal de nomes, esses métodos relacionam a previsão a apenas um fator - tempo. Eles incluem a média móvel, suavização exponencial e linha de tendência linear e estão entre os métodos mais populares para previsão de curto prazo entre empresas de serviços e de manufatura. Esses métodos pressupõem que padrões históricos identificáveis ​​ou tendências para a demanda ao longo do tempo se repetirão. Média móvel Uma previsão da série de tempo pode ser tão simples quanto usar a demanda no período atual para prever a demanda no próximo período. Isso às vezes é chamado de previsão ingênua ou intuitiva. 4 Por exemplo, se a demanda é de 100 unidades esta semana, a previsão para as próximas semanas demanda é de 100 unidades, se a demanda acaba por ser 90 unidades, em seguida, as semanas seguintes demanda é de 90 unidades, e assim por diante. Este tipo de método de previsão não leva em conta o comportamento histórico da demanda, que se baseia apenas na demanda no período atual. Ele reage diretamente aos movimentos normais, aleatórios na demanda. O método da média móvel simples usa vários valores de demanda durante o passado recente para desenvolver uma previsão. Isso tende a atenuar, ou suavizar, os aumentos aleatórios e diminuições de uma previsão que usa apenas um período. A média móvel simples é útil para prever a demanda que é estável e não exibe qualquer comportamento de demanda pronunciado, como uma tendência ou padrão sazonal. As médias móveis são calculadas para períodos específicos, como três meses ou cinco meses, dependendo de quanto o meteorologista deseja suavizar os dados da demanda. Quanto mais longo for o período de média móvel, mais suave será. A fórmula para computar a média móvel simples é computar uma média movente simples A empresa instantânea da fonte do escritório do grampo do papel vende e entrega materiais de escritório às companhias, às escolas, e às agências dentro de um raio de 50 milhas de seu armazém. O negócio de suprimentos de escritório é competitivo, ea capacidade de entregar ordens prontamente é um fator para obter novos clientes e manter os antigos. (Os escritórios geralmente não pedem quando eles ficam com poucos suprimentos, mas quando eles acabam completamente. Como resultado, eles precisam de suas ordens imediatamente.) O gerente da empresa quer ter certeza de motoristas e veículos estão disponíveis para entregar ordens prontamente e Eles têm estoque adequado em estoque. Portanto, o gerente quer ser capaz de prever o número de pedidos que ocorrerão durante o próximo mês (ou seja, para prever a demanda por entregas). A partir de registros de ordens de entrega, a gerência acumulou os seguintes dados para os últimos 10 meses, a partir do qual quer calcular média móvel de 3 e 5 meses. Vamos supor que é o fim de outubro. A previsão resultante da média móvel de 3 ou 5 meses é tipicamente para o próximo mês na seqüência, que neste caso é novembro. A média móvel é calculada a partir da demanda por ordens para os 3 meses anteriores na seqüência de acordo com a seguinte fórmula: A média móvel de 5 meses é calculada a partir dos dados de demanda de 5 meses anteriores como segue: A média móvel é de 3 e 5 meses As previsões médias móveis para todos os meses de demanda são mostradas na tabela a seguir. Na verdade, apenas a previsão para novembro com base na demanda mensal mais recente seria usada pelo gerente. No entanto, as previsões anteriores para meses anteriores nos permitem comparar a previsão com a demanda real para ver quão preciso é o método de previsão - ou seja, quão bem ele faz. Médias de três e cinco meses As previsões de média móvel na tabela acima tendem a suavizar a variabilidade que ocorre nos dados reais. Este efeito de alisamento pode ser observado na seguinte figura em que as médias de 3 meses e 5 meses foram sobrepostas em um gráfico dos dados originais: A média móvel de 5 meses na figura anterior suaviza as flutuações em maior extensão do que A média móvel de 3 meses. No entanto, a média de 3 meses reflete mais de perto os dados mais recentes disponíveis para o gerente de suprimentos de escritório. Em geral, as previsões usando a média móvel de longo prazo são mais lentas para reagir às recentes mudanças na demanda do que aquelas feitas usando médias móveis de período mais curto. Os períodos extras de dados atenuam a velocidade com que a previsão responde. Estabelecer o número apropriado de períodos para usar em uma média móvel de previsão muitas vezes requer alguma quantidade de experimentação de tentativa e erro. A desvantagem do método de média móvel é que não reage a variações que ocorrem por uma razão, tais como ciclos e efeitos sazonais. Fatores que causam mudanças são geralmente ignorados. É basicamente um método mecânico, que reflete dados históricos de forma consistente. No entanto, o método da média móvel tem a vantagem de ser fácil de usar, rápido e relativamente barato. Em geral, este método pode fornecer uma boa previsão para o curto prazo, mas não deve ser empurrado muito longe no futuro. Média Móvel Ponderada O método da média móvel pode ser ajustado para refletir mais de perto flutuações nos dados. No método da média móvel ponderada, os pesos são atribuídos aos dados mais recentes de acordo com a seguinte fórmula: Os dados de demanda para PM Computer Services (mostrados na tabela para o Exemplo 10.3) parecem seguir uma tendência linear crescente. A empresa quer calcular uma linha de tendência linear para ver se ela é mais precisa do que as previsões de suavização exponencial e suavização exponencial ajustadas desenvolvidas nos Exemplos 10.3 e 10.4. Os valores necessários para os cálculos dos mínimos quadrados são os seguintes: Usando esses valores, os parâmetros para a linha de tendência linear são calculados da seguinte forma: Portanto, a equação da linha de tendência linear é: Para calcular uma previsão para o período 13, Linha de tendência: O gráfico a seguir mostra a linha de tendência linear em comparação com os dados reais. A linha de tendência parece refletir de perto os dados reais - isto é, ser um bom ajuste - e seria assim um bom modelo de previsão para esse problema. No entanto, uma desvantagem da linha de tendência linear é que ele não vai se ajustar a uma mudança na tendência, como os métodos de previsão exponencial suavização que é, é assumido que todas as previsões futuras seguirá uma linha reta. Isso limita o uso deste método para um período de tempo mais curto em que você pode ser relativamente certo de que a tendência não vai mudar. Ajustes sazonais Um padrão sazonal é um aumento repetitivo e diminuição da demanda. Muitos itens de demanda apresentam comportamento sazonal. As vendas de vestuário seguem os padrões sazonais anuais, com a demanda de roupas quentes aumentando no outono e inverno e declinando na primavera e no verão como a demanda por roupas mais frias aumenta. A demanda para muitos itens de varejo, incluindo brinquedos, equipamentos esportivos, vestuário, aparelhos eletrônicos, presuntos, perus, vinho e frutas, aumentam durante a temporada de férias. Aumenta a demanda de cartão junto com dias especiais como Dia dos Namorados e Dia das Mães. Padrões sazonais também podem ocorrer em uma base mensal, semanal ou mesmo diária. Alguns restaurantes têm demanda mais elevada na noite do que no lunch ou nos fins de semana ao contrário dos dias úteis. Tráfego - portanto, as vendas - em shopping centers pega na sexta-feira e sábado. Existem vários métodos para refletir os padrões sazonais em uma previsão de séries temporais. Vamos descrever um dos métodos mais simples usando um fator sazonal. Um fator sazonal é um valor numérico que é multiplicado pela previsão normal para obter uma previsão ajustada sazonalmente. Um método para desenvolver uma demanda por fatores sazonais é dividir a demanda por cada período sazonal pela demanda anual total, de acordo com a seguinte fórmula: Os fatores sazonais resultantes entre 0 e 1,0 são, de fato, a parcela da demanda anual total atribuída a Cada temporada. Esses fatores sazonais são multiplicados pela demanda anual prevista para produzir previsões ajustadas para cada estação. Calculando uma Previsão com Ajustes Sazonais A Wishbone Farms cria perus para vender a uma empresa de processamento de carne ao longo do ano. No entanto, sua alta temporada é obviamente durante o quarto trimestre do ano, de outubro a dezembro. A Wishbone Farms experimentou a demanda por perus nos últimos três anos, conforme mostrado na tabela a seguir: Como temos três anos de dados de demanda, podemos calcular os fatores sazonais dividindo a demanda trimestral total pelos três anos pela demanda total nos três anos : Em seguida, queremos multiplicar a demanda prevista para o próximo ano, 2000, por cada um dos fatores sazonais para obter a demanda prevista para cada trimestre. Para conseguir isso, precisamos de uma previsão de demanda para 2000. Nesse caso, uma vez que os dados de demanda na tabela parecem exibir uma tendência geralmente crescente, calculamos uma linha de tendência linear para os três anos de dados na tabela para obter um resultado bruto Estimativa de previsão: Assim, a previsão para 2000 é 58.17, ou 58.170 perus. Usando esta previsão anual de demanda, as previsões ajustadas sazonalmente, SF i, para 2000 estão Comparando estas previsões trimestrais com os valores de demanda reais na tabela, elas pareceriam ser estimativas de previsão relativamente boas, refletindo tanto as variações sazonais nos dados quanto Tendência ascendente geral. 10-12. Como o método da média móvel é semelhante à suavização exponencial 10-13. O efeito no modelo de suavização exponencial aumentará a constante de suavização 10-14. Como a suavização exponencial ajustada difere da suavização exponencial 10-15. O que determina a escolha da constante de alisamento para a tendência em um modelo de suavização exponencial ajustado 10-16. Nos exemplos de capítulo para métodos de séries temporais, a previsão inicial foi sempre assumida como sendo a mesma da demanda real no primeiro período. Sugira outras maneiras de que a previsão inicial possa ser derivada em uso real. 10-17. Como o modelo de previsão da linha de tendência linear difere de um modelo de regressão linear para previsão 10-18. Dos modelos de séries temporais apresentados neste capítulo, incluindo a média móvel ea média móvel ponderada, a suavização exponencial ea suavização exponencial ajustada, ea linha de tendência linear, qual você considera o melhor Por que 10-19. Quais são as vantagens que a suavização exponencial ajustada tem sobre uma linha de tendência linear para a demanda prevista que exibe uma tendência 4 K. B. Kahn e J. T. Mentzer, Forecasting in Consumer and Industrial Markets, The Journal of Business Forecasting 14, n. 2 (Verão 1995): 21-28.

No comments:

Post a Comment